WOUTER RYSSENS

Microscopic models of nuclear structure at scale

W. Ryssens

N. Chamel, S. Bara, G. Grams, N. Shchechilin, M. Bender, S. Hilaire and S. Goriely

23rd of April 2024

wryssens@ulb.be

The nuclear chart and the processes traversing it

Extrapolations in

- nucleon number
- energy
- temperature
- density
-

and all of that for

- ~7000 nuclei
- many reactions

what we need is models that should be

- 1. predictive....
- 2. but also **complete**

$$E \sim \int d^3r \Big[C^{\rho} \rho(\mathbf{r}) \rho(\mathbf{r}) + C^{\tau} \tau(\mathbf{r}) \rho(\mathbf{r}) + \dots \Big]$$

Strong points

- simple wavefunctions but individual nucleons
- based on "in-medium" N-N interaction
- many observables accessible
- Feasible for ~7000 nuclei

Strong points

- simple wavefunctions but individual nucleons
- based on "in-medium" N-N interaction
- many observables accessible
- Feasible for ~7000 nuclei

How to move forward?

- 1. search for a "better" EDF form
- 2. describe more observables simultaneously
- 3. include more physics in the wavefunction

Large-scale models in 1-2 dimensions

Nuclear deformation

- larger variational space
- shape DOF characterized by multipole moments
- capture correlations at modest CPU cost
- intuitive interpretation

Large-scale models in 1-2-3 dimensions

Nuclear deformation

- larger variational space
- shape DOF characterized by multipole moments
- capture correlations at modest CPU cost
- intuitive interpretation

More general configurations

- triaxial shapes
- reflection asymmetry
- elongated shapes

Large-scale models in 1-2-3 dimensions

Nuclear deformation

- larger variational space
- shape DOF characterized by multipole moments
- capture correlations at modest CPU cost
- intuitive interpretation

More general configurations

- triaxial shapes
- reflection asymmetry
- elongated shapes
- spin densities and currents

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

- fitted to 45 fission barriers
- includes spins, currents,...

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

- fitted to 45 fission barriers
- includes spins, currents,...

BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...

BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation

Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]		a adala a	
Radii [fm]			
Prim. barriers [MeV]			
Secon. barriers [MeV]			
Fission isomers [MeV]			
Max. NS mass $[M_{\odot}]$			

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...

BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation

Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]	0.741	0.678	0.631
Radii [fm]	0.024	0.027	0.024
Prim. barriers [MeV]		20 88 65	
Secon. barriers [MeV]			
Fission isomers [MeV]			
Max. NS mass $[M_{\odot}]$			

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...

BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation

Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]	0.741	0.678	0.631
Radii [fm]	0.024	0.027	0.024
Prim. barriers [MeV]	0.88	0.44	0.33
Secon. barriers [MeV]	0.87	0.47	0.51
Fission isomers [MeV]	1.0	0.49	0.34
Max. NS mass $[M_{\odot}]$			

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...

BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation

Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]	0.741	0.678	0.631
Radii [fm]	0.024	0.027	0.024
Prim. barriers [MeV]	0.88	0.44	0.33
Secon. barriers [MeV]	0.87	0.47	0.51
Fission isomers [MeV]	1.0	0.49	0.34
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3

Masses

Triaxial deformation

- many nuclei are affected
- effects up to 2.5 MeV near Z~44

Masses

Triaxial deformation

- many nuclei are affected
- effects up to 2.5 MeV near Z~44
- does help reproduce trends, e.g. Rh

Masses

Reflection asymmetry

- small number of known nuclei affected
- Near N=184:
 - large effect up to 2.5 MeV
 - dripline modified
 - fission properties modified

Deformations

"Ordinary" quadrupole deformation

Deformations

"Ordinary" quadrupole deformation ... and triaxial deformation ...

Deformations

Radii

Systematics and details of charge radii

- rms (charge radii) ~ 0.027 fm
- complete charge densities
- ALL deformation affects radii!

Radii

Systematics and details of charge radii

- rms (charge radii) ~ 0.027 fm
- complete charge densities
- ALL deformation affects radii!

S. Geldhof, PRL **128**, 152501 (2022). More data on Pd and Ru, coming by the ATLANTIS collaboration!

A. R. Vernon et al., Nature 607, **260** (2022), J. Eberz et al., NPA **464**, 9 (1987). J.Y. Zeng et al. PRC **50**, 1388 (1994).

G. Grams et al., EPJA 59, 270 (2023).

Neutron stars

- results in higher maximum mass
- usually incompatible with masses
- we used additional ρ-dependencies

Neutron stars

Stiffer EoS

- results in higher maximum mass
- usually incompatible with masses
- we used additional ρ-dependencies

Realistic pairing gaps

- realistic pairing properties in INM
- constrained to advanced calculations

0

Fission barriers

W. R. et al., EPJA **59**, 96 (2023).

0

Fission barriers

W. R. et al., EPJA **59**, 96 (2023). **Fission barriers** $60^{\circ} 50^{\circ}$ 30° 20° 15° 40° $\gamma =$ 10° 0.38 $E \left(Me \Lambda \right)$ $20.2 \frac{100}{5} \frac{100}{5}$ 5° 0.0 0.21.60 0.40.60.81.01.21.4 β_{20}

W. R. et al., EPJA 59, 96 (2023).

Fission

Rms σ	BSkG1	BSkG2	BSkG3
Masses [MeV]	0.741	0.678	0.631
Radii [fm]	0.024	0.027	0.024
Prim. barriers [MeV]	0.88	0.44	0.33
Secon. barriers [MeV]	0.87	0.47	0.51
Fission isomers [MeV]	1.0	0.49	0.34
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3

Fission properties of 45 actinide nuclei

- includes odd-A and odd-odds
- <u>all</u> inner barriers exploit triaxiality
- <u>all</u> outer barriers exploit
 - o octupole deformation
 - triaxial deformation

Wouter Ryssens (ULB)

Nuclear level densities

Nuclear level densities

- required for **compound** reactions
- NLDs "count" phase-space
- little direct exp. information

Nuclear level densities

- required for **compound** reactions
- NLDs "count" phase-space
- little direct exp. information
- symmetries impact level structure

Nuclear level densities

- required for **compound** reactions
- NLDs "count" phase-space
- little direct exp. information
- symmetries impact level structure

Nuclear level densities

- required for **compound** reactions
- NLDs "count" phase-space
- little direct exp. information
- symmetries impact level structure

NLDs with BSkG3

- systematic inclusion of triaxiality
- good reproduction of data

Nuclear level densities

- required for **compound** reactions
- NLDs "count" phase-space
- little direct exp. information
- symmetries impact level structure

NLDs with BSkG3

- systematic inclusion of triaxiality
- good reproduction of data

W. Ryssens, A. Koning, S. Hilaire and S. Goriely, in preparation.

Large-scale application to fission

- get multi-D surfaces for 1000s of nuclei
- find the fission path on each surface
- estimate fission rates and yields

Towards a complete EoS with the BSkGs

Work by Nikolai Shchechilin

Towards a complete EoS with the BSkGs

Nuclear pasta

- crystalline structures in NS crust
- impact NS cooling and emitted GW

Work by Nikolai Shchechilin

Towards a complete EoS with the BSkGs

Nuclear pasta

- crystalline structures in NS crust
- impact NS cooling and emitted GW
- QM treatment with realistic EDFs
- 10⁴ 10⁶ particles in large volumes!

Work by Nikolai Shchechilin

- next-to-next-to-leading order
- systematic expansion in gradients

N2LO EDF

$s^{(4)}(\vec{a}) = \sum \left[A^{(4,1)} \left(A \vec{a}^{1}, \sigma \right) \left(A \vec{a}^{1}, \sigma \right) \right]$	(4.0) 1
$\mathcal{E}_{\text{Sk},o}(t) = \sum_{t=0,1} \lfloor A_{t,o} - (\Delta D_t) \rfloor \cdot (\Delta D_t) +$	$A_{t,o}^{(4,2)}\vec{D}_{t}^{1,\sigma}\cdot\vec{D}_{t}^{\Delta,\Delta\sigma} + A_{t,o}^{(4,3)}\vec{D}_{t}^{(\vee,\vee)\sigma}\cdot\vec{D}_{t}^{(\vee,\vee)\sigma}$
$+A_{\mathrm{t,o}}^{(4,4)}\sum_{\mu\nu\kappa}\mathcal{D}_{\mu\nu\kappa}^{\nabla,\nabla\sigma}\mathcal{D}_{\mu\nu\kappa}^{\nabla,\nabla\sigma}+A_{\mathrm{t,o}}^{(4,5)}$	$D \sum_{\mu\nu\kappa} D^{\nabla,\nabla\sigma}_{\mu\nu\kappa} \left(\nabla_{\mu} \nabla_{\nu} D^{1,\sigma}_{\kappa} \right) ,$
$+A_{\rm t,o}^{(4,6)}\vec{c}_t^{1,\nabla}\cdot \left(\Delta\vec{c}_t^{1,\nabla}\right)+A_{\rm t,o}^{(4,7)}\left($	$\boldsymbol{\nabla}\cdot\vec{C}_{t}^{1,\boldsymbol{\nabla}}\right)\left(\boldsymbol{\nabla}\cdot\vec{C}_{t}^{1,\boldsymbol{\nabla}}\right)+A_{t,o}^{(4,8)}\vec{C}_{t}^{1,\boldsymbol{\nabla}}\cdot\vec{C}_{t}^{\Delta,\boldsymbol{\nabla}}\right],$

$$\begin{split} & \mathcal{E}^{(0)}_{\mathsf{Sko}}(\vec{r}) &= \sum_{t=0,1} \left[A^{(0,1)}_{\mathsf{L},0} \bar{b}^{1,\sigma}_t \cdot \bar{b}^{1,\sigma}_t + A^{(0,2)}_{\mathsf{L},0} (\bar{b}^{-1,\sigma}_0 \cdot \bar{b}^{1,\sigma}_t \cdot \bar{b}^{1,\sigma}_t - \bar{b}^{-1,\sigma}_t \right], \\ & \mathcal{E}^{(2)}_{\mathsf{Sko}}(\vec{r}) &= \sum_{t=0,1} \left[A^{(2,1)}_{\mathsf{L},0} \bar{b}^{1,\sigma}_t \cdot \left(\Delta \bar{b}^{1,\sigma}_t \right) + A^{(2,2)}_{\mathsf{L},0} \bar{b}^{1,\sigma}_t \cdot \bar{b}^{-1,\sigma}_t + A^{(2,3)}_{\mathsf{L},0} \bar{c}^{-1,\nabla}_t \cdot \bar{c}^{-1,\nabla}_t + A^{(2,4)}_{\mathsf{L},0} \bar{b}^{1,\sigma}_t \cdot \left(\nabla \times \bar{c}^{-1,\nabla}_t \right) \right], \end{split}$$

$$\begin{split} \mathcal{E}_{\text{Sk},e}^{(1)} &= \sum_{t=0,1} \left[A_{t,e}^{(4)} \circ b_{t}^{-} \left(\Delta b_{t}^{-} \right) + A_{t,e}^{(4)} \circ b_{t}^{-} \right] + A_{t,e}^{(4)} = \sum_{t=0,1} \left[A_{t,e}^{(4,1)} \left(\Delta b_{t}^{1,1} \right) + A_{t,e}^{(4,2)} o_{t}^{1,1} \right] + A_{t,e}^{(4,2)} o_{t}^{(\nabla,\nabla)} o_{t}^{(\nabla,\nabla)} o_{t}^{(\nabla,\nabla)} \right] \\ &+ A_{t,e}^{(4,4)} \sum_{t=0} \left[D_{t,\mu\nu}^{\nabla,\nabla} O_{t,\mu\nu}^{\nabla,\nabla} + A_{t,e}^{(4,5)} \sum_{t=0} \left[D_{t,\mu\nu}^{\nabla,\nabla} O_{t,\mu\nu}^{\nabla,\nabla} + A_{t,e}^{(4,5)} \right] o_{t}^{(\nabla,\mu\nu} o_{t}^{-} o_{t}^{(1,1)} \right] \end{split}$$

 $+A_{\mathrm{t,e}}^{(4,\delta)}\sum_{\mu\nu}^{} C_{t,\mu\nu}^{1,\nabla\sigma} \left(\Delta C_{t,\mu\nu}^{1,\nabla\sigma}\right) + A_{\mathrm{t,e}}^{(4,7)}\sum_{\mu\nu\kappa} \left(\nabla_{\mu}C_{t,\mu\kappa}^{1,\nabla\sigma}\right) \left(\nabla_{\nu}C_{t,\nu\kappa}^{1,\nabla\sigma}\right) + A_{\mathrm{t,e}}^{(4,8)}\sum_{\mu\nu}^{} C_{t,\mu\nu}^{1,\nabla\sigma}C_{t,\mu\nu}^{1,\nabla\sigma}\right],$

$$\mathcal{E}^{(2)}_{\text{Sk},e}(\vec{r}) \quad = \quad \sum_{t=0,1} \left[A^{(2,1)}_{t,e} D^{1,1}_{t} \left(\Delta D^{1,1}_{t} \right) + A^{(2,2)}_{t,e} D^{1,1}_{t} D^{(\nabla,\nabla)}_{t} + A^{(2,3)}_{t,e} \sum_{\mu\nu} C^{1,\nabla\sigma}_{t,\mu\nu} C^{1,\nabla\sigma}_{t,\mu\nu} + A^{(2,4)}_{t,e} D^{1,1}_{t} \left(\nabla \cdot C^{1,\nabla\times\sigma}_{t} \right) \right],$$

$$\mathcal{E}_{Sk,e}^{(0)}(\vec{r}) = \sum_{t=0,1} \left[A_{t,e}^{(0,1)} \left(D_t^{1,1} \right)^2 + A_{t,e}^{(0,2)} \left(D_0^{1,1} \right)^\alpha \left(D_t^{1,1} \right)^2 \right],$$

BSkG4

RSk(-4

$\mathcal{E}_{\mathbf{Sk},\mathbf{e}}^{(0)}(\vec{r}) = \sum_{t=0,1} \left[A_{t,\mathbf{e}}^{(0,1)} \left(D_t^{1,1} \right)^2 + A_{t,\mathbf{e}}^{(0,2)} \left(D_0^{1,1} \right)^\alpha \left(D_t^{1,1} \right)^2 \right],$ $\mathcal{E}_{\mathbf{Sk},\mathbf{e}}^{(2)}(\vec{r}) = \sum_{t=0,1} \left[A_{t,e}^{(2,1)} \mathcal{D}_{t}^{1,1} \left(\Delta \mathcal{D}_{t}^{1,1} \right) + A_{t,e}^{(2,2)} \mathcal{D}_{t}^{1,1} \mathcal{D}_{t}^{(\nabla,\nabla)} + A_{t,e}^{(2,3)} \sum_{\mu,\nu} \mathcal{C}_{t,\mu\nu}^{1,\nabla\sigma} \mathcal{C}_{t,\mu\nu}^{1,\nabla\sigma} + A_{t,e}^{(2,4)} \mathcal{D}_{t}^{1,1} \left(\nabla \cdot \mathcal{C}_{t}^{1,\nabla\times\sigma} \right) \right],$ $\mathcal{E}_{\mathsf{Sk},\Theta}^{(4)}(\vec{r}) = \sum_{t \in \mathcal{O}} \left[A_{t,e}^{(4,1)} \left(\Delta D_{t}^{1,1} \right) \left(\Delta D_{t}^{1,1} \right) + A_{t,e}^{(4,2)} D_{t}^{1,1} D_{t}^{\Delta,\Delta} + A_{t,e}^{(4,3)} D_{t}^{(\nabla,\nabla)} D_{t}^{(\nabla,\nabla)} \right]$ $+A_{t,e}^{(4,4)}\sum_{\nu\nu} D_{t,\mu\nu}^{\nabla,\nabla} D_{t,\mu\nu}^{\nabla,\nabla} + A_{t,e}^{(4,5)}\sum_{\nu\nu} D_{t,\mu\nu}^{\nabla,\nabla} \left(\nabla_{\mu}\nabla_{\nu} D_{t}^{1,1}\right)$ $+A_{\mathrm{t},\mathrm{e}}^{(4,6)}\sum_{\mu\nu}C_{t,\mu\nu}^{1,\nabla\sigma}\left(\Delta C_{t,\mu\nu}^{1,\nabla\sigma}\right)+A_{\mathrm{t},\mathrm{e}}^{(4,7)}\sum_{\mu\nu\nu}\left(\nabla_{\mu}C_{t,\mu\kappa}^{1,\nabla\sigma}\right)\left(\nabla_{\nu}C_{t,\nu\kappa}^{1,\nabla\sigma}\right)+A_{\mathrm{t},\mathrm{e}}^{(4,8)}\sum_{\mu\nu}C_{t,\mu\nu}^{1,\nabla\sigma}C_{t,\mu\nu}^{\Delta,\nabla\sigma}\right],$ $\mathcal{E}_{Sk,o}^{(0)}(\vec{r}) = \sum_{t=0,1} \left[A_{t,o}^{(0,1)} \vec{D}_{t}^{1,\sigma} \cdot \vec{D}_{t}^{1,\sigma} + A_{t,o}^{(0,2)} (D_{0}^{1,1})^{\alpha} \vec{D}_{t}^{1,\sigma} \cdot \vec{D}_{t}^{1,\sigma} \right],$ $\mathcal{E}^{(2)}_{\mathsf{SkO}}(\vec{r}) = \sum_{4,0,1} \left[A^{(2,1)}_{t,0} \vec{D}^{1,\sigma}_{t} \cdot \left(\Delta \vec{D}^{1,\sigma}_{t} \right) + A^{(2,2)}_{t,0} \vec{D}^{1,\sigma}_{t} \cdot \vec{D}^{(\nabla,\nabla)\sigma}_{t} + A^{(2,3)}_{t,0} \vec{C}^{1,\nabla}_{t} \cdot \vec{C}^{1,\nabla}_{t} + A^{(2,4)}_{t,0} \vec{D}^{1,\sigma}_{t} \cdot \left(\nabla \times \vec{C}^{1,\nabla}_{t} \right) \right],$ $\mathcal{E}_{\mathsf{Sk},\diamond}^{(4)}(\vec{r}) = \sum_{t, \diamond,\diamond} \left[A_{t,\diamond}^{(4,1)} \left(\Delta \vec{D}_{t}^{1,\sigma} \right) \cdot \left(\Delta \vec{D}_{t}^{1,\sigma} \right) + A_{t,\diamond}^{(4,2)} \vec{D}_{t}^{1,\sigma} \cdot \vec{D}_{t}^{\Delta,\Delta\sigma} + A_{t,\diamond}^{(4,3)} \vec{D}_{t}^{(\nabla,\nabla)\sigma} \cdot \vec{D}_{t}^{(\nabla,\nabla)\sigma} \right] \right]$ $+A_{\mathrm{t},\mathrm{o}}^{(4,4)}\sum_{\nu \in \mathcal{W}} D_{\mu\nu\kappa}^{\nabla,\nabla\sigma} D_{\mu\nu\kappa}^{\nabla,\nabla\sigma} + A_{\mathrm{t},\mathrm{o}}^{(4,5)}\sum_{\nu \in \mathcal{W}} D_{\mu\nu\kappa}^{\nabla,\nabla\sigma} \left(\nabla_{\mu}\nabla_{\nu} D_{\kappa}^{1,\sigma}\right) \;,$ $+A_{\mathrm{t,o}}^{(4,6)}\vec{c}_t^{1,\nabla}\cdot\left(\Delta\vec{c}_t^{1,\nabla}\right)+A_{\mathrm{t,o}}^{(4,7)}\left(\boldsymbol{\nabla}\cdot\vec{c}_t^{1,\nabla}\right)\left(\boldsymbol{\nabla}\cdot\vec{c}_t^{1,\nabla}\right)+A_{\mathrm{t,o}}^{(4,8)}\vec{c}_t^{1,\nabla}\cdot\vec{c}_t^{\Delta,\nabla}\right],$

N2LO EDF

- systematic expansion in gradients \bullet
- next-to-next-to-leading order
- massively complicates the numerics \bullet

Advantages

Work by Guilherme Grams

... all with **LESS** parameters!

T-dependent effective mass

support heavy neutron stars

- less density dependencies

BSkG4

N2LO EDF

- systematic expansion in gradients
- next-to-next-to-leading order
- massively complicates the numerics

Advantages

- support heavy neutron stars
- less density dependencies
- T-dependent effective mass
 - ... all with **LESS** parameters!

N2LO EDF

- systematic expansion in gradients
- next-to-next-to-leading order
- massively complicates the numerics

Advantages

- support heavy neutron stars
- less density dependencies
- T-dependent effective mass
 - ... all with **LESS** parameters!

BRUSLIB: http://www.astro.ulb.ac.be/bruslib/

Institut d'Astro	onomie et d'Astrophysique	Faculté des Sciences
Université Libre de B	ruxelles	View Edit History Print
Home	The BSkG3 model	
Research STARLAB Project Staff Databases	BSkG3 is a large-scale model of nuclear structure: the "large-sca number of nuclei (several thousands!) but also to our ambition to structure as possible within a single framework. On this page, we of the basic structure of this model and a link @ to a table contair around-state properties for thousands of nuclei.	le" in this sentence refers to the describe as much of nuclear provide some more explanation hing a large amount of calculated
Public	The model is based on the concept of a nuclear energy density fu the total energy of a nucleus:	nctional (EDF), which starts from
Library	$E_{tot} = E_{HFB} + E_{corr}$,	
Links	which is calculated microscopically from a mean-field wavefunction	on of the Hartree-Fock-Bogoliubov
Location	(HFB) type. By minimizing the total energy, we find a HFB many- the nuclear ground state and is used to calculate all kinds of prop	body wavefunction that represents perties. Our search for this
Astronomical weather	minimal-enegy state is very general: in order to grasp as much c	orrelations among nucleons as we
forecast Guest Info	 can, we allow our HFB states to break several symmetries. In this (i) nuclear triaxiality, (ii) left-right reflection asymmetry and ever odd-mass and odd-odd systems due to the unpaired nucleons. In 	s way, we account consistently for n (iii) time-reversal breaking in n addition, we represent such
Restricted	nuclear configurations numerically on a rather fine three-dimension	onal coordinate grid, guaranteeing
Admin	us a (very high) numerical accuracy of about 100 keV on the abs	olute values of the total energy.

Available right now for BSkG3:

- 1. ground state properties for 7k nuclei
 - a. masses
 - b. deformations
 - c. charge radii
 - d. pairing properties
 - e. rotational properties
- 2. Fission barriers for actinides

Expansion/modernisation (slowly) ongoing.

We build <u>large-scale</u>, <u>microscopic</u> models for (astro) applications.

Large-scale = thousands of nuclei and many observables. Microscopic = simple wave functions yet complex symmetry breaking.

We build **large-scale**, **microscopic** models for (astro) applications.

Large-scale = thousands of nuclei and many observables. Microscopic = simple wave functions yet complex symmetry breaking.

BSkG3

- triaxial, octupole and time-reversal deformation
- competitive for masses and charge radii
- unmatched for fission properties
- consistent with NS observations
- masses and densities in TALYS!

We build *large-scale*, *microscopic* models for (astro) applications.

Large-scale = thousands of nuclei and many observables. Microscopic = simple wave functions yet complex symmetry breaking.

BSkG3

- triaxial, octupole and time-reversal deformation
- competitive for masses and charge radii
- unmatched for fission properties
- consistent with NS observations
- masses and densities in TALYS!

The immediate future:

- complete NLDs for BSkG1/2/3
- fission calculations at an extreme scale
- unified EoS for neutron star applications
- more with less: BSkG4

We build *large-scale*, *microscopic* models for (astro) applications.

Large-scale = thousands of nuclei and many observables. Microscopic = simple wave functions yet complex symmetry breaking.

BSkG3

- triaxial, octupole and time-reversal deformation
- competitive for masses and charge radii
- unmatched for fission properties
- consistent with NS observations
- masses and densities in TALYS!

The immediate future:

- complete NLDs for BSkG1/2/3
- fission calculations at an extreme scale
- unified EoS for neutron star applications
- more with less: BSkG4

.... and <u>much more</u> to come!

We build *large-scale*, *microscopic* models for (astro) applications.

Large-scale = thousands of nuclei and many observables. Microscopic = simple wave functions yet complex symmetry breaking.

BSkG3

- triaxial, octupole and time-reversal deformation
- competitive for masses and charge radii
- unmatched for fission properties
- consistent with NS observations
- masses and densities in TALYS!

The immediate future:

- complete NLDs for BSkG1/2/3
- fission calculations at an extreme scale
- unified EoS for neutron star applications
- more with less: BSkG4

.... and <u>much more</u> to come!

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

S. Hilaire

M. Bender

S. Bara

and several experimental teams!

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

S. Hilaire

M. Bender

S. Bara

and several experimental teams!

..... the computing time!

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

S. Hilaire

M. Bender

S. Bara

and several experimental teams!

..... the computing time!

..... the funding!

KU LEUVEN

..... all the wonderful work!

S. Goriely G. Grams N. Chamel N. Shchechilin

S. Hilaire

M. Bender

S. Bara

and several experimental teams!

..... the computing time!

..... the funding!

KU LEUVEN

..... your attention!

Bonus!

Interlude: why do we do these complex things?

Mic-mac approaches?

competitive in rms multiple observables

comparatively unstable no link mic. <-> mac.

G. Grams, W.R. et al., in preparation

Machine learning?

Ab Initio?

error quantification "truly" microscopic multiple observables

infeasible at scale <u>(for now)</u> not competitive on rms <u>(for now)</u>