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The nuclear chart and the processes traversing it

Extrapolations in 
- nucleon number
- energy
- temperature
- density
- ……

and all of that for 
- ~7000 nuclei
- many reactions

what we need is models that should be

1. predictive….
2. but also complete
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Skyrme Energy Density Functionals (EDFs)

Local densities and currents of a wavefunction

Coupling constants (~ 25 parameters) fitted to dataEnergy 

● simple wavefunctions but individual nucleons

● based on “in-medium” N-N interaction

● many observables accessible

● Feasible for ~7000 nuclei

1. search for a “better” EDF form

2. describe more observables simultaneously

3. include more physics in the wavefunction

Strong points How to move forward? 



Large-scale models in 1-2-3 dimensions

Nuclear deformation

● larger variational space

● shape DOF characterized by multipole moments

● capture correlations at modest CPU cost 

● intuitive interpretation 
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Masses

● many nuclei are affected

● effects up to 2.5 MeV near Z~44

Triaxial deformation

G. Scamps et al.,  EPJA 57, 333 (2021). 



Masses

● many nuclei are affected

● effects up to 2.5 MeV near Z~44

● does help reproduce trends, e.g. Rh

Triaxial deformation

G. Scamps et al.,  EPJA 57, 333 (2021). M. Hukkanen, W.R. et al., PRC 107, 014306 (2023).



Masses

● small number of known nuclei affected
● Near N=184:

○ large effect up to 2.5 MeV
○ dripline modified
○ fission properties modified

Reflection asymmetry

G. Grams et al., EPJA 59, 270 (2023).



Deformations
“Ordinary” quadrupole deformation



Deformations
“Ordinary” quadrupole deformation … and triaxial deformation …



Deformations

W.R. et al., Phys. Rev. Lett. 130, 212302 (2024)

“Ordinary” quadrupole deformation … and triaxial deformation … … and even hexadecapole!



Radii

Systematics and details of charge radii

● rms (charge radii) ~ 0.027 fm

● complete charge densities

● ALL deformation affects radii!



Radii

S. Geldhof, PRL 128, 152501 (2022).
More data on Pd and Ru, coming by the ATLANTIS collaboration!

Systematics and details of charge radii

● rms (charge radii) ~ 0.027 fm

● complete charge densities

● ALL deformation affects radii!
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J.Y. Zeng et al. PRC 50, 1388 (1994).
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Neutron stars

● results in higher maximum mass

● usually incompatible with masses

● we used additional ⍴-dependencies

G. Grams et al., EPJA 59, 270 (2023).

Stiffer EoS

● realistic pairing properties in INM

● constrained to advanced calculations

Realistic pairing gaps 
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Fission

● includes odd-A and odd-odds

● all inner barriers exploit triaxiality

● all outer barriers exploit 

○ octupole deformation
○ triaxial deformation

Fission properties of 45 actinide nuclei

W. R. et al., EPJA 59, 96 (2023).
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Wouter Ryssens (ULB)Nuclear level densities: 196Pt

● required for compound reactions

● NLDs “count” phase-space 

● little direct exp. information 

● symmetries impact level structure

Nuclear level densities

● systematic inclusion of triaxiality

● good reproduction of data

NLDs with BSkG3

W. Ryssens, A. Koning, S. Hilaire and S. Goriely, in preparation.



Large-scale application to fission

● get multi-D surfaces for 1000s of nuclei

● find the fission path on each surface

● estimate fission rates and yields

Several challenges

Work by Silvia Bara
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Towards a complete EoS with the BSkGs

● crystalline structures in NS crust

● impact NS cooling and emitted GW

● QM treatment with realistic EDFs 

● 104 - 106 particles in large volumes!

Nuclear pasta

Work by Nikolai Shchechilin
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BRUSLIB: http://www.astro.ulb.ac.be/bruslib/

1. ground state properties for 7k nuclei
a. masses
b. deformations
c. charge radii
d. pairing properties
e. rotational properties

2. Fission barriers for actinides

Expansion/modernisation (slowly) ongoing.

Available right now for BSkG3:
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Thank you for…

…… your attention!

S. Goriely
G. Grams
N. Chamel
N. Shchechilin

M. Bender
…… all the wonderful work!

…… the computing time! …… the funding!

S. BaraS. Hilaire

and several experimental teams!



Bonus!



S. Goriely,  EPJA  59, 16 (2023). Models can make all the difference…

Masses Level densities

Optical potential γ strength function



Interlude: why do we do these complex things?
S. Goriely,  EPJA  59, 16 (2023). 

✅ competitive in rms
✅ multiple observables

Mic-mac approaches? Machine learning? Ab Initio? 

G. Grams, W.R. et al., in preparation

✅ absolute champion in rms
✅ ridiculously easy

❌ comparatively unstable
❌ no link mic. <-> mac.

❌ thousands (?) of parameters
❌ single observable

✅ error quantification
✅ “truly” microscopic
✅ multiple observables
❌ infeasible at scale (for now)
❌ not competitive on rms (for now)


