#### WOUTER RYSSENS



## BSkG models versus experiments

#### **Wouter Ryssens**

### 4th of December 2023



wryssens@ulb.be

wryssens.com

(id)

## The nuclear chart...









**Extrapolations** in N,Z,E, T, ρ, ... for **~7000** nuclei and **many** reactions!

We need is models that should be

- 1. predictive....
- 2. but also **complete**



**Extrapolations** in N,Z,E, T, ρ, ... for **~7000** nuclei and **many** reactions!

We need is models that should be

- 1. predictive....
- 2. but also **complete**

#### **Energy Density Functional models**

- ≅ 25 parameters fitted to data
- / based on "in-medium" interaction
- / wavefunctions with nucleons
- 🖌 🛛 many observables accessible
- 🖌 🛛 feasible for ~7000 nuclei
- symmetry-breaking => 3D shapes



- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation



- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation



- fitted to 45 fission barriers
- includes spins, currents,...



- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation



- fitted to 45 fission barriers
- includes spins, currents,...



#### BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation



- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

#### BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...



#### BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation





- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

#### BSkG2 (2022)

- fitted to 45 fission barriers
- includes spins, currents,...



#### BSkG3 (2023)

- larger max. neutron star mass
- includes octupole deformation





| Rms $\sigma$               | BSkG1 | BSkG2 | BSkG3 |
|----------------------------|-------|-------|-------|
| Masses [MeV]               | 0.741 | 0.678 | 0.631 |
| Radii [fm]                 | 0.024 | 0.027 | 0.024 |
| Prim. barriers [MeV]       | 0.88  | 0.44  | 0.33  |
| Secon. barriers [MeV]      | 0.87  | 0.47  | 0.51  |
| Fission isomers [MeV]      | 1.0   | 0.49  | 0.34  |
| Max. NS mass $[M_{\odot}]$ | 1.8   | 1.8   | 2.3   |

## Masses

M. Hukkanen, W.R. et al., PRC 107, 014306 (2023).

#### M. Hukkanen, W.R. et al., arXiv:2306.04517 [nucl-ex] (2023).



#### JYFLTRAP mass measurements

- neutron-rich Rh & neutron-rich Ru
  - triaxiality from spectroscopy
  - ... and (indirectly) from masses

## Masses



#### JYFLTRAP mass measurements

- neutron-rich Rh & neutron-rich Ru
  - triaxiality from spectroscopy
  - ... and (indirectly) from masses
- neutron-rich Y,Zr, Nb, Mo
  - shape coexistence
  - failure to get details right

M. Hukkanen, W.R. et al., PRC 107, 014306 (2023).

#### M. Hukkanen, W.R. et al., arXiv:2306.04517 [nucl-ex] (2023).



M. Hukkanen, W.R. et al., PRC 107, 014306 (2023).

M. Hukkanen, W.R. et al., arXiv:2306.04517 [nucl-ex] (2023).

## Isomers



#### ..... with Phase-Imaging-ICR!

- massive resolving power for isomers
- set of low-lying isomers in Rh
- new low-lying isomer in Ru

M. Hukkanen, W.R. et al., arXiv:2306.04517 [nucl-ex] (2023).



Isomers

- massive resolving power for isomers
- set of low-lying isomers in Rh
- new low-lying isomer in Ru
- qualitatively interpreted with BSkG's!

## Spectroscopy



#### Neutron-deficient Radium isotopes

- in-beam γ-ray spectroscopy @ JYFL
- looking for highly-deformed states

J. Heery et al, in preparation.

## Spectroscopy





+ 
$$\hat{H}_{\mathrm{rot}} = \sum_{\mu=x,y,z} \frac{\hat{J}_{\mu}^2}{2\mathcal{I}_{\mu}}$$

#### Neutron-deficient Radium isotopes

- in-beam γ-ray spectroscopy @ JYFL
- looking for highly-deformed states

J. Heery et al, in preparation.

## Spectroscopy





**Neutron-deficient Radium isotopes** 

- in-beam γ-ray spectroscopy @ JYFL
- looking for highly-deformed states
- no immediate evidence for that (as predicted by BSkG3!)



Radii of triaxial nuclei S. Geldhof, PRL 128, 152501 (2022).

- all deformation impact radii
- not just  $\beta_{20}$ , but also  $\beta_{22}$ ,  $\beta_{30}$ ,  $\beta_{40}$ , ...!





Radii of triaxial nuclei S. Geldhof, PRL 128, 152501 (2022).

- all deformation impact radii
- not just  $\beta_{20}$ , but also  $\beta_{22}$ ,  $\beta_{30}$ ,  $\beta_{40}$ , ...!
- about to be put to the test with Ru's!





#### Radii of triaxial nuclei S. Geld

S. Geldhof, PRL 128, 152501 (2022).

- **all** deformation impact radii
- not just  $\beta_{20}$ , but also  $\beta_{22}$ ,  $\beta_{30}$ ,  $\beta_{40}$ , ...!
- about to be put to the test with Ru's!





#### Radii of triaxial nuclei S. Geldhof,

S. Geldhof, PRL 128, 152501 (2022).

- all deformation impact radii
- not just  $\beta_{20}$ , but also  $\beta_{22}$ ,  $\beta_{30}$ ,  $\beta_{40}$ , ...!
- about to be put to the test with Ru's!

#### Other projects ongoing

- onset of deformation in Y & Nb chains
- radii of superheavies: Fm

#### Relativistic collisions probe structure

- <sup>238</sup>U, <sup>197</sup>Au @BNL => deformation
- <sup>208</sup>Pb @ CERN => neutron skin



$$\rho^{\text{WS}}(\mathbf{r}) = \frac{\rho_0}{1 + \exp\left([r - R(\theta, \phi)]/a\right)},$$

$$R(\theta,\phi) = R_d \left[ 1 + \sum_{\ell=2}^{\ell} \sum_{m=-\ell}^{\ell} \beta_{\ell m}^{\mathrm{WS}} Y_{\ell m}(\theta,\phi) \right],$$

٦

#### Relativistic collisions probe structure

- <sup>238</sup>U, <sup>197</sup>Au @BNL => deformation
  <sup>208</sup>Pb @ CERN => neutron skin
- simulations require nuclear densities
  Wood-Saxon parameterisation



$$\rho^{\mathrm{WS}}(\mathbf{r}) = \frac{\rho_0}{1 + \exp\left([r - R(\theta, \phi)]/a\right)},$$

$$R(\theta,\phi) = R_d \left[ 1 + \sum_{\ell=2}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \beta_{\ell m}^{\mathrm{WS}} \gamma_{\ell m}(\theta,\phi) \right],$$

#### Relativistic collisions probe structure

- <sup>238</sup>U, <sup>197</sup>Au @BNL => deformation
  <sup>208</sup>Pb @ CERN => neutron skin
- simulations require nuclear densities
  - Wood-Saxon parameterisation
  - with naive input from B(E2) rates



#### Volume deformation

$$\beta_{20} = \frac{R_d^2}{R_0^2} \left[ \beta_{20}^{\text{WS}} + \frac{2}{7} \sqrt{\frac{5}{\pi}} (\beta_{20}^{\text{WS}})^2 + \frac{12}{7\sqrt{\pi}} \beta_{20}^{\text{WS}} \beta_{40}^{\text{WS}} \right],$$

Surface deformation

#### .... but this misses low-energy physics!

• low-energy experiments measure volume deformation!

### Volume deformation

$$\beta_{20} = \frac{R_d^2}{R_0^2} \left[ \beta_{20}^{\text{WS}} + \frac{2}{7} \sqrt{\frac{5}{\pi}} (\beta_{20}^{\text{WS}})^2 + \frac{12}{7\sqrt{\pi}} \beta_{20}^{\text{WS}} \beta_{40}^{\text{WS}} \right],$$
  
Surface deformation

- low-energy experiments measure volume deformation!
- but is not equal to surface deformation!



## Volume deformation

$$\beta_{20} = \frac{R_d^2}{R_0^2} \left[ \beta_{20}^{\text{WS}} + \frac{2}{7} \sqrt{\frac{5}{\pi}} (\beta_{20}^{\text{WS}})^2 + \frac{12}{7\sqrt{\pi}} \beta_{20}^{\text{WS}} \beta_{40}^{\text{WS}} \right],$$

Surface deformation

- low-energy experiments measure volume deformation!
- but is not equal to surface deformation!
- Taking BSkG input fixes central collisions!



#### Volume deformation

$$\beta_{20} = \frac{R_d^2}{R_0^2} \left[ \beta_{20}^{\text{WS}} + \frac{2}{7} \sqrt{\frac{5}{\pi}} (\beta_{20}^{\text{WS}})^2 + \frac{12}{7\sqrt{\pi}} \beta_{20}^{\text{WS}} \beta_{40}^{\text{WS}} \right],$$

Surface deformation

- low-energy experiments measure volume deformation!
- but is not equal to surface deformation!
- Taking BSkG input fixes central collisions!
- First evidence of  $\beta_{40}$  deformation



### Volume deformation

$$\beta_{20} = \frac{R_d^2}{R_0^2} \left[ \beta_{20}^{\text{WS}} + \frac{2}{7} \sqrt{\frac{5}{\pi}} (\beta_{20}^{\text{WS}})^2 + \frac{12}{7\sqrt{\pi}} \beta_{20}^{\text{WS}} \beta_{40}^{\text{WS}} \right],$$

Surface deformation

- low-energy experiments measure volume deformation!
- but is not equal to surface deformation!
- Taking BSkG input fixes central collisions!
- First evidence of  $\beta_{40}$  deformation
- What will the future bring?



## BRUSLIB: http://www.astro.ulb.ac.be/bruslib/



## BRUSLIB: http://www.astro.ulb.ac.be/bruslib/



| Institut d'Astr                                              | onomie et d'Astrophysique                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Faculté<br>des<br>Sciences                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Université Libre de E                                        | Bruxelles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | View Edit History Print                                                                                                                                                                                                                                          |  |
| Home                                                         | The BSkG3 model                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                  |  |
| Research<br>STARLAB Project<br>Staff<br>Databases            | BSkG3 is a large-scale model of nuclear structure: the "large-sc<br>number of nuclei (several thousands!) but also to our ambition<br>structure as possible within a single framework. On this page, w<br>of the basic structure of this model and a link @ to a table conta<br>ground-state properties for thousands of nuclei.                                                                                                                                                         | ale" in this sentence refers to the<br>to describe as much of nuclear<br>re provide some more explanation<br>ining a large amount of calculated                                                                                                                  |  |
| Public<br>Teaching                                           | The model is based on the concept of a nuclear energy density functional (EDF), which starts from<br>the total energy of a nucleus:                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |  |
| Library                                                      | $E_{tot} = E_{HFB} + E_{corr}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |  |
| Links                                                        | which is calculated microscopically from a mean-field wavefunct<br>(HFB) type, By minimizing the total energy, we find a HFB many                                                                                                                                                                                                                                                                                                                                                        | ion of the Hartree-Fock-Bogoliubov<br>-body wavefunction that represents                                                                                                                                                                                         |  |
| Astronomical weather<br>forecast<br>Guest Info<br>Restricted | the nuclear ground state and is used to calculate all kinds of pro-<br>minimal-enegy state is very general: in order to grasp as much<br>can, we allow our HFB states to break several symmetries. In th<br>(i) nuclear triaxiality, (ii) left-right reflection asymmetry and ev-<br>odd-mass and odd-odd systems due to the unpaired nucleons. In<br>nuclear configurations numerically on a rather fine three-dimen-<br>us a (very high) numerical accuracy of about 100 keV on the ab | operties. Our search for this<br>correlations among nucleons as we<br>his way, we account consistently for<br>en (iii) time-reversal breaking in<br>In addition, we represent such<br>sional coordinate grid, guaranteeing<br>solute values of the total energy. |  |

#### Available right now for BSkG3:

- 1. ground state properties for 7k nuclei
  - a. masses
  - b. deformations
  - c. charge radii
  - d. pairing properties
  - e. rotational properties
- 2. Fission barriers for actinides

Expansion/modernisation (slowly) ongoing.



We build <u>large-scale</u>, <u>microscopic</u> models for (mostly) astrophysical applications.

The interplay theory <-> experiment is crucial, ... and this is something we invest in!

We build <u>large-scale</u>, <u>microscopic</u> models for (mostly) astrophysical applications.

The interplay theory <-> experiment is crucial, ... and this is something we invest in!

- masses
- radii

- deformations
  - (limited) spectroscopy



We build <u>large-scale</u>, <u>microscopic</u> models for (mostly) astrophysical applications.

The interplay theory <-> experiment is crucial, ... and this is something we invest in!

- masses
- radii

- deformations
- (limited) spectroscopy

#### Coming up soon for comparison:

- 1. level densities
- 2. repository of nuclear level densities
- 3. fission properties => S. Bara



We build <u>large-scale</u>, <u>microscopic</u> models for (mostly) astrophysical applications.

The interplay theory <-> experiment is crucial, ... and this is something we invest in!

- masses
- radii

- deformations
  - (limited) spectroscopy

#### Coming up soon for comparison:

- 1. level densities
- 2. repository of nuclear level densities
- 3. fission properties => S. Bara

#### Other exciting things:

- 1. BSkG4 => G. Grams
- 2. Neutron stars => N. Shchechilin, C. Mondal



## ..... all the wonderful work!



## ..... all the wonderful work!



## ..... the computing time!



## ..... all the wonderful work!



## ..... the computing time!



# ..... the funding!



## ..... all the wonderful work!



## ..... the computing time!



# ..... the funding!



..... your attention!